(Fall 2024)

PREREQUISITES:	MA 1024 Algebra & Trigonometry or MA 1008 College Algebra or ITC 3006 Mathematics for Computing	
	MA 2130 Calculus I or MA 2105 Applied Calculus	
CATALOG DESCRIPTION:	This course provides a practical introduction to numerical methapproximating solutions to linear and nonlinear problems in the sciences. Topics covered include numerical techniques for solving nonlinear equation, polynomial interpolation, numerical differentiat integration, solution of initial value problems, and the solution of system and non-linear equations.	hods of applied a single tion and stems of
RATIONALE:	This course is an introduction to numerical analysis and scientific computing. The primary objective of the course is to develop a basic understanding of numerical techniques and theories in computational mathematics and to develop skills for creating algorithms for solving mathematical problems on the computer. Students will gain experience in implementing and observing the numerical performance of the various numerical methods using a math programming language.	
LEARNING OUTCOMES:	 As a result of taking this course, the students should be able to: Demonstrate understanding of the use of numerical algorithms and concepts related to complexity, stability, and convergence. Apply various numerical methods for solving non-linear equations and understand the use of numerical computations to implement these methods. Apply numerical differentiation and integration, and compute approximate solutions of ordinary differential equations. Utilize numerical techniques to solve large systems of equations and evaluate accuracy and stability. 	
METHOD OF TEACHING AND LEARNING:	 In congruence with the teaching and learning strategy of the college, the following tools are used: Lectures and class discussions. Homework assignments. Office hours held by the instructor to provide further assistance to students. Use of library facilities for further study and preparation for the exams Use of the Blackboard course management platform to further support communication, by posting lecture notes, assignment instruction, timely announcements, formative quizzes and online submission of assignments. 	
ASSESSMENT:	Summative:	
	1 st Assessment: Midterm Examination (1 hour written)	40%
	2 nd Assessment: Portfolio of student work	10%
	Final Assessment: Final Examination (2 hours written)	50%
	 The first assessment tests Learning Outcomes 1 and 2. The second assessment tests Learning Outcomes 1, 2, 3, and 4. The final assessment tests Learning Outcomes 1, 2, 3, and 4. 	
	The final grade for this module will be determined by averaging all su assessment grades, based on the predetermined weights for each ass Students are not required to resit failed assessments in this module. I pass the module results in module repeat.	immative essment. Failure to

INDICATIVE READING:	 REQUIRED READING: R. L. Burden, J. Douglas Faires, A. M. Burden, <i>Numerical Analysis</i>, 10th Edition, 2016, Cengage
	 RECOMMENDED READING: Timothy Sauer, Numerical Analysis, 3rd Edition, 2018, Pearson D. R. Kincaid and E. Ward Cheney, Numerical Analysis: Mathematics of Scientific Computing, 3rd Edition, 2002, Brooks/Cole Publishing Co.
INDICATIVE MATERIAL:	REQUIRED MATERIAL: N/A
	 RECOMMENDED MATERIAL: College Mathematics Mathematics Magazine American Mathematical Monthly
COMMUNICATION REQUIREMENTS:	Oral and written communication skills using academic / professional English.
SOFTWARE REQUIREMENTS:	MS Office and Blackboard CMS. Any software distributed with the course textbook. Python (<u>www.python.org</u>) <i>or</i> Scilab (<u>www.scilab.org</u>)
WWW RESOURCES:	http://mathworld.wolfram.com http://sosmath.com https://www.khanacademy.org/math https://www.symbolab.com
INDICATIVE CONTENT:	 Basic Concepts in Computing Round-Off Errors and Floating-Point Arithmetic Convergence and Stability Numerical Algorithms and Software Numerical Solutions of Equations in One Variable The Bisection Method Fixed-Point Iteration The Newton-Raphson Method Error Analysis for Iterative Methods Computing Zeros of Polynomials Interpolation and Polynomial Approximation
	* If time normits