DEREE COLLEGE SYLLABUS FOR: ITC 4558 HIGH PERFORMANCE COMPUTING 3/0/3 **UK LEVEL: 6** (Fall 2025) **UK CREDITS: 15** ITC 1070 Information Technology Fundamentals ITC 2088 Introduction to Programming **PREREQUISITES:** ITC 2086 Computer Systems Architecture **ITC 2093 Operating Systems Concepts** ITC 3006 Mathematics for Computing **COREQUISITES:** None. Big data challenges; multi-core programming; shared and distributed **CATALOG DESCRIPTION:** memory; concurrency models; synchronization and coordination; distributed algorithms and frameworks; GPU programming The course aims to bridge the big gap between traditional programming for serial machines and programming for multi- or many-core machines and large clusters. Students have the opportunity to learn and practice **RATIONALE:** multiprocessor programming along with models and tools for building high-performance applications, and thus develop skills to tackle the challenges associated with the big data world. As a result of taking this course, the student should be able to: 1. Demonstrate understanding of the HPC laws, models and architectures. 2. Critically assess basic patterns for problem decomposition **LEARNING OUTCOMES:** 3. Explain how algorithms can be parallelized. 4. Apply concepts and techniques of programming shared-memory multi-core and cluster computers. 5. Build and evaluate framework-based systems that utilize hybrid shared/distributed memory computer clusters. In congruence with the teaching and learning strategy of the college, the following tools are used: Lectures, laboratory sessions, and use of generative AI tools to **METHOD OF TEACHING AND** inform course content **LEARNING:** Office hours held by the instructor to provide further assistance to students. Use of the online content management system (Blackboard CMS) to further facilitate communication. **ASSESSMENT:** Summative: 1st assessment: Midterm exam 30% Short answers and/or case problems 2nd assessment: Portfolio of student work and oral assessment 10% Final assessment: Project 60% High performance framework-based implementation Formative: Take-home short problems 0%

	The formative assessments aim to prepare students for the summative assessments and expose them to teamwork. The 1 st summative assessment tests the LOs 1, 2 and 3. The 2 nd summative assessment tests the LOs 1-5. The final summative assessment tests the LOs 1-5.
	The final grade for this module will be determined by averaging all summative assessment grades, based on predetermined weights for each assessment. If students pass the final summative assessment , which tests all Learning Outcomes for this module, and the average grade for the module is 40 or above, students are not required to resit any failed assessments.
	 REQUIRED READING: M. Herlihy et al., "The Art of Multi-Processor Programming", 2nd ed. Morgan-Kaufmann, 2021. Instructor's notes.
INDICATIVE READING:	 RECOMMENDED READING: M. Zaharia, "An Architecture for Fast and General Data Processing on Large Clusters", ACM Books, 2016. T. Mattson et al. "Patterns for Parallel Programming", Addison- Wesley, 2013. A. Kaminsky, "Big CPU, Big Data", CreateSpace, 2016.
	Additional recommended readings list available through Blackboard.
INDICATIVE MATERIAL: (e.g. audiovisual, digital material, etc.)	REQUIRED MATERIAL: N/A
	RECOMMENDED MATERIAL: MIT Video Lectures on Parallel Computing on MIT OpenCourseWare: Parallel Computing Mathematics MIT OpenCourseWare
COMMUNICATION REQUIREMENTS:	Daily access to the course's site on the College's Blackboard CMS and the acg email. Effective communication using proper written and oral English. Use of word processing and/or presentations software for documentation and presentation of deliverables and the final project.
SOFTWARE REQUIREMENTS:	MS Office JDK8+ Apache Spark OpenMPI on a cluster of 2+ nodes CUDA NVIDIA GPU Computing Toolkit
WWW RESOURCES:	 https://www.open-mpi.org/ https://www.mpich.org/ https://research.cs.wisc.edu/htcondor/ https://en.wikipedia.org/wiki/Cilk https://github.com/ioannischristou/popt4jlib
INDICATIVE CONTENT:	 HPC Hardware Models and Architectures Parallel Computing Bounds: Amdahl's Law, Brent's Theorem etc. Software Concurrency Models: Processes and Threads Synchronization and Coordination Primitives

- 5. Language Memory Models for Shared-Memory Multi-Processors
- 6. Multi-threaded Programming
- 7. Parallel Algorithms
- 8. Communication Primitives for Distributed-Memory Clusters
- 9. Fundamentals of Distributed Algorithms
- 10. Distributed Computing Frameworks: OpenMPI, Spark, Celery
- 11. GPU Programming with CUDA